视频标签:工程问题
所属栏目:初中数学优质课视频
视频课题:人教版初中数学七年级上册3.4实际问题与一元一次方程工程问题-建设
本视频配套资料的教学设计、课件 /课堂实录及教案下载可联本站系客服
3.4实际问题与一元一次方程——工程问题教学设计
教学目标
1. 知识与技能
掌握工程问题中有关量的基本关系式,并会寻求等量关系列方程求解. 提高利用一元一次方程解决实际问题的能力; 2. 过程与方法
经历将实际问题转化为数学问题的过程,进一步体会并认识到方程是刻画现实世界的一个很有效的数学模型,渗透数学建模思想.培养学生的抽象、概括、分析和解决问题的能力; 3. 情感态度
通过学习,进一步认识到方程与现实世界的密切联系. 感受数学的应用价值,增强用数学的意识,从而激发学生学习数学的热情.体会在解决问题的过程中同学之间交流合作的重要性. 让学生在探究中感受学习的快乐。 教学重点:
找到工程问题中的相等关系,建立数学模型,正确列出一元一次方程进行求解。建立模型解决实际问题的一般方法和步骤。 教学难点:
由实际问题抽象出数学模型的探究过程。
教学方法
采用启发诱导,实例探究,讲练结合的教学方法,揭示知识的发
生和形成过程。这种教学方法以“生动探索”为基础,先“引导发现”
后“讲评点拔”,让学生在克服困难与障碍的过程中充分发挥自己的观察能力,想象能力和思维能力。
教学过程
(一)问题引入,导入新课
1、加工一批零件,甲每小时加工60个,则
(1)甲2小时可加工 个,a小时可加工个 零件。 (2)加工b个零件,甲需 小时完成 。
2、加工一批零件,甲单独做8天完成,乙单独做6天完成。甲、乙两人合作3天完成的工作量为 。(只列式不计算) 3、整理一批图书,由一个人做要40h完成,一个人1h完成的工作量为 ,一个人4h完成的工作量为 ,x个人4h完成的工作量为 。
4、通过解决上面的问题你能总结出其中所涉及的数量关系吗?
学生思考,点名回答 小结:
1、在工程问题中,当不知道总工程的具体量时,通常把全部工作量简单的表示为1。
2、如果一件工作需要n小时完成,那么平均 每小时完成的工作量就是 , m 小时完成的工作量是 。 3、工程问题中,人均工作效率相同时: 工作量=人均工效×人数×工作时间
3
(二)师生互动,探究新知 初步感知
一件工作,甲单独做15小时完成,乙单独做10小时完成.那么两人合做多少小时完成?
工作效率 工作时间 工作量 甲 乙
由学生独立完成填表,然后通过合作交流,得出结论,让学生品尝成功的喜悦。
练习:一件工作,甲单独做15小时完成,乙单独做10 小时完成.甲
先单独做9小时,后因甲有其它任务调离,余下的任务由乙单独做。那么乙还要多少小时完成这件工作? 学生独立完成,教师巡视,部分学生板演
变式:一件工作,甲单独做15天完成,乙单独做10天完成。他
们合作3天后,甲有事离开,余下的任务由乙单独完成。那么乙共需多少天完成?
学生独立思考,设不同未知数解答,比较哪种方法更简单。 思考:通过解答以上问题你能归纳出用一元一次方程解决实际问题的基本过程吗?
解决问题
整理一批图书,由一个人做要40h完成。现计划由一部分人先做4h,然后增加2人和他们一起做8,完成这项工作,假设这些人的工作效
4
率相同,具体应先安排多少人工作?
人均工效 人数 工作时间 工作量
先 后
讨论交流找到题目中的信息,教师引导回答 1 这个题目与之前的题目的区别在于? 2 这件工作是怎样完成的?
3 利用表格找到题目中的相等关系,列出方程? (三)巩固训练,熟练技能
整理一批数据,由一人做需要80小时完成,现在先安排一些人做了2小时,再增加了5人做了8小时,完成了这项工作的4
3,求最开始时安排了多少人整理数据? (四)总结反思,情意发展
通过本课时的学习,我们学习了:
1 用一元一方程解决实际问题的基本过程:包括设未知数,列方程,解方程,检验所得结果,确定答案。正确分析问题中的等量关系是解决问题的关键。
2 今天主要学习了工程问题,回顾工程问题的相关关系式。 (五)布置作业
完成书上P106 习题3.4 4,5题 板书设计
3.4实际问题与一元一次方程——工程问题
工程总量=工作效率×工作时间
视频来源:优质课网 www.youzhik.com