网站地图 | vip会员 | 优质课网_收录全国及各省市最新优质课视频,说课视频,名师课例实录,高效课堂教学视频,观摩展示公开示范课视频,教学大赛视频!

在线播放:高中数学人教A版版必修1第一章1.3.1函数的单调性-吉林省优课

联系本站客服加+微信号15139388181 或QQ:983228566点击这里给我发消息
视频简介:

高中数学人教A版版必修1第一章1.3.1函数的单调性-吉林省优课

视频标签:函数的单调性

所属栏目:高中数学优质课视频

视频课题:高中数学人教A版版必修1第一章1.3.1函数的单调性-吉林省优课

本视频配套资料的教学设计、课件 /课堂实录及教案下载可联本站系客服

函数的单调性教学设计 
【教材分析】 
    《函数单调性》是高中数学新教材必修一第二章第三节的内容。在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。本节内容是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。 
【教学目标】 
知识与技能: 
1.通过生活中的例子帮助学生理解增函数、减函数及其几何意义。 2.学会应用函数的图象理解和研究函数的单调性及其几何意义。 过程与方法: 
1.通过本节课的教学,渗透数形结合的数学思想,对学生进行辨证唯物主义的教育。 2.通过探究与活动,使学生明白考虑问题要细致,说理要明确。 情感与态度: 
1.通过本节课的教学,使学生能理性的描述生活中的增长、递减的现象。 
2.通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。 
【重点难点】 
重点:函数单调性概念的理解及应用。 难点:函数单调性的判定及证明。 关键:增函数与减函数的概念的理解。 
【教法分析】 
为了实现本节课的教学目标,在教法上我采取了: 
1.通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性。 
2.在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念。 3.在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达。 
【学法分析】 
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。 
【教学过程设计】 
(一)问题情境 
设计意图:创设海宁潮潮起潮落,成语→图象的问题情境,让学生用朴素的生活语言描述他们对变化规律的理解,并请学生将文字语言转化为图形语言,这样做可使教学过程富有情趣,可激发学生的学习热情,教学起点的设定也比较恰当,学生的参与度较高。 
(二)温故知新 
1.问题1:观察学生绘制的函数的图象(实际教学中可根据学生回答的情况而定),指出图象的变化的趋势。 
      
 
                    
             
                    
                             

   
观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。 
2.问题2:对“图象呈逐渐上升趋势”这句话初中是怎样描述的? 例如:初中研究2yx时,我们知道,当x<0时,函数值y随x的增大而减小,当x>0时,函数值y随x的增大而增大。 
回忆初中对函数单调性的解释: 
图象呈逐渐上升趋势数值y随x的增大而增大;图象呈逐渐下降趋势数值y随x的增大而减小。 
函数这种性质称为函数的单调性。 
设计意图:学生在函数单调性这一概念的学习上有三个认知基础:一是生活体验,二是函数图象,三是初中对函数单调性的认识。对照绘制的函数图象,让学生回忆初中对函数单调性的描述的定义,并在此基础上进行概念的符号化建构,与学生的认知起点衔接紧密,符合学生的认知规律。 
(三)建构概念 
问题3:如何用符号化的数学语言来准确地表述函数的单调性呢?          
对于区间I内的任意两个值12,xx,当12xx时,都有12()()fxfx。 
单调增函数的定义:            
问题4:如何定义单调减函数呢? 可以通过类比的方法由学生给出。          
 
                    
             
                    
                             3 
  
设计意图:通过师生双边活动及学生讨论,可以让学生充分参与用严格的数学符号语言定义函数单调性的全过程,让他们亲身体验数学概念如何从直观到抽象,从文字到符号,从粗疏到严密。让他们充分感悟数学概念符号化的建构原则。问题4则要求学生结合图象化单调增函数的定义,通过类比的方法,由学生自己得到单调减函数的概念,在这个过程中,学生可以体会数学概念是如何扩充完善的。 
(四)理解概念 
1.顾名思义,对“单调”两字加深理解 
汉语大词典对“单调”的解释是:简单、重复而没有变化。 2.呼应引入,解决问题情境中的问题 
如:21yx的单调增区间是(,);1
yx
在(0,)上是减函数。 3.单调性是函数的“局部”性质 如:函数1yx在(0,)和(,0)上都是减函数,能否说1yx
在定义域(,0)(0,)上上减函数?  
引导学生讨论,从图象上观察或用特殊值代入验证否定结论(如取121
1,2
xx
)。              
设计意图:学生对一个概念的认识不可能一次完成,教师要善于从多个角度,通过概念变式教学和构造反例帮助学生理解概念的内涵与外延。在学习如何证明一个函数的单调性之前,先与学生一起探讨怎样才能否定一个函数的单调性对帮助学生理解函数单调性的概念尤为重要,可以加深学生对“任意”两字的理解。 
(五)运用概念  
 
                    
             
                    
                             4 
 
通过两例,教师要向学生说明: 
1.判断函数单调性的主要方法:①观察法:画出函数图象来观察;②定义法:严格按照定义进行验证;③分解法:对函数进行恰当的变形,使之变成我们所熟悉的且已知其单调性的较简单函数的组合。 
2.概括出证明函数单调性的一般步骤:取值→作差→变形→定号。 (六)回顾总结 
本节课主要学习了函数单调性的定义,单调区间的概念,能利用(1)图象法;(2)定义法来判定函数的单调性,从中体会了数形结合的思想,学会从“特殊到一般再到特殊”的思维方法来研究问题。 【教学反思】 
1.给出生活实例和函数单调性的图形语言,调动学生的参与意识,通过直观图形得出结论,渗透数形结合的数学思想。问题是数学的心脏,问题是学生思维的开始,问题是学生兴趣的开始。这里,通过问题,引发学生的进一步学习的好奇心。 
2.给出函数单调性的数学语言。通过教师指图说明,分析定义,提问等办法,使学生把定义与直观图象结合起来,加深对概念的理解,渗透数形结合分析问题的数学思想方法。 
3.有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此.利用学生自己提出的问题,让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究。 
4.通过安排基本练习题,使学生在完成必修教材基本学习任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成。 
5.让学生体验数学知识的发生发展过程应该成为这节课的一个重要教学目标。函数的单调性的定义是对函数图象特征的一种数学描述,它经历了由图象直观感知到自然语言描述,再到数学符号语言描述的进化过程,这个过程充分反映了数学的理性精神,是一个很有价值的数学教育载体。 
6.教学设计最根本的着力点是“为学习设计教学”,而不是“为教学设计学习”。通过对“函数单调性”教学设计,我对“为学习设计教学”有了更深的理解。如果把教学看作是教师带领学生一起去远足,那么学情分析的目的是要分析学生的认知基础,确定一个合情合理的教学起点;目标导向这是要教师分析预期达到的教学效果,即远足所期望到达的目的地,这是教学的根本和核心任务,是教学设计的关键;知识定位则好比是教师要预先分析通往目的地的道路状况,从而决定前进的方法和策略;问题设计则好比是设计行程,恰当安排可以指引师生高效地向着目的地前行。本节课就是通过这样的设计思想来安排教学设计的。 

课前布置任务:
(1) 由于某种原因,2008年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.
(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.
课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.
下图是北京市今年8月8日一天24小时内气温随时间变化的曲线图.
 
       
 
引导学生识图,捕捉信息,启发学生思考.
问题:观察图形,能得到什么信息?
预案:(1)当天的最高温度、最低温度以及何时达到;
(2)在某时刻的温度;
(3)某些时段温度升高,某些时段温度降低.
在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有帮助的.
问题:还能举出生活中其他的数据变化情况吗?
预案:水位高低、燃油价格、股票价格等.
归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.
《函数的单调性》教学设计说明
 
一、教学内容的分析
函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其它性质提供了方法依据.
对于函数单调性,学生的认知困难主要在两个方面:(1)要求用准确的数学符号语言去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比较困难的;(2)单调性的证明是学生在函数内容中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.根据以上的分析和教学大纲的要求,确定了本节课的重点和难点.
二、教学目标的确定
根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调判断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出语言表达能力、推理论证能力的培养和良好思维习惯的养成.
三、教学方法和教学手段的选择
本节课是函数单调性的起始课,采用教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.
四、教学过程的设计
为达到本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施: 
(1)在探索概念阶段, 让学生经历从直观到抽象、从特殊到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深入.
(2)在应用概念阶段,通过对证明过程的分析,帮助学生掌握用定义证明函数单调性的方法和步骤.
(3)考虑到我校学生数学基础较好、思维较为活跃的特点,对判断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.
 

视频来源:优质课网 www.youzhik.com -----更多视频请在本页面顶部搜索栏输入“函数的单调性”其中的单个词或词组,搜索以字数为3-6之间的关键词为宜,切记!注意不要输入“科目或年级等文字”。本视频标题为“高中数学人教A版版必修1第一章1.3.1函数的单调性-吉林省优课”,所属分类为“高中数学优质课视频”,如果喜欢或者认为本视频“高中数学人教A版版必修1第一章1.3.1函数的单调性-吉林省优课”很给力,您可以一键点击视频下方的百度分享按钮,以分享给更多的人观看。优质课网 的成长和发展,离不开您的支持,感谢您的关注和支持!有问题请【点此联系客服QQ:983228566】 -----

优质课说课大赛视频
关闭
15139388181 微信:15139388181
QQ:983228566
点击这里给我发消息
点击这里给我发消息
点击这里给我发消息
优质课网_手机微信
加入vip会员
如何观看本站视频