视频标签:两条直线的,位置关系
所属栏目:初中数学优质课视频
视频课题:北师大版数学七年级下册《两条直线的位置关系(第1课时)》甘肃省 - 兰州
本视频配套资料的教学设计、课件 /课堂实录及教案下载可联本站系客服
第二章 相交线与平行线
1两条直线的位置关系(第1课时)
课时安排说明:
《两条直线的位置关系》共分两课时,第一课时,主要内容是探索两条直线的位置关系,了解对顶角、余角、补角的定义及其性质;第二课时,主要内容是垂直的定义、表示方法、性质及其简单应用.
一、 学生起点分析
学生的知识技能基础:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储备为本节课的学习奠定了良好的基础,使学生具备了掌握本节知识的基本技能。
学生活动经验基础:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。
二、 教学任务分析
针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程” ,发展学生的空间观念及推理能力;引导学生在思考、交流、表达的基础上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:
1.知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。
2
2.过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步发展空间观念、推理能力和有条理表达的能力。
3.情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解决。
三、教学过程设计
本课时我遵循“开放”的原则,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综合应用;第五环节:学有所思,反馈巩固; 第六环节:布置作业,能力延伸。
第一环节 走进生活 引入课题
活动内容一:两条直线的位置关系
1.请同学们观察几张生活中的图片,复习直线的概念,进行归类。
3
1
2 3 4 2.1—4
2.巩固练习:教师展示下列图片,学生快速回答:
2.1—1 结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 .
2.定义分别为: 。
问题1:在2.1—1中,直线m和n 的关系是 ;a和b是 ;
a和n是 。
活动目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的基本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。
第二环节 动手实践 探究新知
动手实践一 .
问题1:观察2.1—4:∠1和∠2的位置有什么关系?大小
有何关系?为什么?小组合作交流,尝试用自己的语言
描述对顶角的定义。
问题2:转动两条边的过程中,∠1和∠2还保持相等吗?
∠
m n
a
b
请先画一画:两条直线直线AB和
CD,交于点O,再回答下列问题.
4
3和∠4呢?你有何结论?
问题3:下列各图中,∠1和∠2是对顶角的是( )
问题4:如图2.1—6所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形零件的圆心角的度数吗?你能说出所量角是多少度吗?为什么?
活动目的:概括归纳得到猜想和规律,并加以验
证,是创新的重要方法。结合具体的学习内容,设计有效的数学探究活动,使学生经历数学的发生发展过程,积累数学活动经验。设置问题1和问题2的目的是通过创设生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的活动素材,使学生在自主学习的过程中,学会对顶角的概念及其性质。同时进一步培养学生抽象几何图形进行建模的能力。而问题3和问题4是利用学习过的有关事实解决实际问题,一会数学在生活中的应用,进一步巩固了对顶角的概念及其性质,方法的不唯一激发了学生的兴趣。
动手实践二
补角定义:一般地,如果两个角的和是1800,那么称这两个角互为补角(supplementary angle)
余角定义:
如果两个角的和是900,那么称这两个角互为余角(complementary angle) 活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“互补互余”仅仅表明了
1
2
1
2
1
2
1
2
A
B
C
D
注意:互余与互补是指两个角之间的数量关系,与它们的位置无关。
1.请画出两个角,使他们的和为直角。
2.请画出两个角,使它们的和为平角。 3.小组交流画法,相互点评。
4.用自己的语言描述补角余角的定义。
5
两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。
巩固反馈:
问题1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长
记录、整理各种题型,练习2分钟。教师巡视,给予评价,捕捉好资源。
问题2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。 问题3:下列说法中,正确的有 。(填序号)
① 已知∠A=40º,则∠A的余角=500②若∠1+∠2=90º,则∠1和∠2互为余角。 ③若∠1+∠2+∠3=180º,则∠1、∠2和∠3互为补角。④若∠A=40º26′,则∠A的补角=139º34′⑤一个角的补角必为钝角。⑥一个锐角的补角比这个角的余角大900
活动目的:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。
动手实践三
观看视频,动手操作,可抽象成图2.1—8,ON与DC交于点O,∠DON=∠CON=900,∠1=∠2
小组合作交流,解决下列问题:在图2.1—8中 问题1:哪些角互为补角?哪些角互为余角? 问题2:∠3与∠4有什么关系?为什么?
问题3:∠AOC与∠BOD有什么关系?为什么? 你还能得到哪些结论?
2 D
C
O
1 3 4 A
N B
2.1—8
同角或者等角的余角相等。 同角或者等角的补角相等。
6
活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。”“同角或者等角的余角相等。”并能够用自己的语言说出简单推理。同时发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力。并在这个过程中,培养学生抽象几何图形进行建模的能力。本着面向全体的原则,从学生生活经验和熟悉的背景知识出发,通过创设情境串---问题串,极大的调动全体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以达到人人都能学好数学的目标!
第三环节 学以致用,步步为营
问题1:①.因为∠1+∠2=90º,∠2+∠3=90º,所以∠1= ,理由是 .
② 因为∠1+∠2=180º,∠2+∠3=180º,所以∠1= ,理由是 .
活动目的:通过一题多变,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。重视动手操作,是发展学生思维,培养学生数学能力最有效途径之一。通过亲自画图,可以直观的发现有关结论,它有利于让学生参与知识的形成过程,促进对抽象数学的理解,为问题的顺利解决而奠定基础。变式训练题的设置更能激发学生的兴趣,在超级变变变中体验数学的美,学会从不同的角度看待问题。
第四环节 拓展延伸,综合应用
问题1:如图2.1—11已知:直线AB与CD交于点O, ∠EOD=900,回答下列问题: 1. ∠AOE的余角是 ;补角是 。
2. ∠AOC的余角是 ;补角是 ;对顶角是 。
活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让
O
B
A C
D
E
2.1—11
7
O
A B C D
E 2.1—14
2.1—13 学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。
第五环节 学有所思 反馈巩固
归纳总结:
1. 你学到了哪些知识点? 2. 你学到了哪些方法? 3. 你还有哪些困惑?
活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、网络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生独自梳理知识,归纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。
巩固反馈
1. 如图2.1-13,直线AB与CD交于点O,∠BOC=900,EF经过点O. (1)指出图中所有的对顶角;
(2)图中那些角与∠AOE互余?互补?
(3)若∠BOF=34°,试求出∠AOF,∠BOE,∠DOE的度数.
2.如图2.1—14,点O在直线AB上,OC平分∠BOD,OE平分∠AOD,请找出∠COD的余角和补角,并说明理由。
3.学以致用: 如图2.1—15:小颖想测量一堵拐角高墙在底面上所成的角∠AOB度数,人不能进入围墙内,你能帮小颖想出简单的测量方法吗?请简述你的方法。
活动目的:巩固本节课的知识点,检验学生的掌握程度。
第六环节 布置作业 能力延伸 基础题:1.书P42页习题2.1 第 1,2,3,4,5题
提高题:2.下图由两块相同的直角三角板拼成,其中∠FDE=∠AOB=900,点O在
FD上,DE在直线AB上, 请找出相等的角、互余的角、互补的角。
活动目的:作业应该体现出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了同一图形经过不同变化可以产生不同问题,与课堂的问题相呼应;作业分层,可以让不同程度的学生都能有不同的收获。
四、教学设计反思:
1. 开放课堂 激发潜能
数学来源于生活,反之又服务于生活。本课时我遵循“开放”的原则,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!
2.动手操作 探究新知
“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,提高修养。”通过动手画图,可以加深学生对知识的理解,这也是促使学生认真审题的重要方法。学生的画法千变万化,他们在相互交流中,很容易发现自己的问题,起到相互补充,相互学习的效果,可以轻而易举地掌握新知识。 3.巧设问题串 打造高效课堂
我在教材提供的教学素材的基础上,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境。变式训练、一题多解的设置,题目由易到难,由简到繁,争取能让每
C
A
B
D
E
F
9
一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学生的思维多向开花,极大的调动学生学习数学的热情! 4.注意事项。
课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的思维也是百花齐放,教师应注意捕捉有效信息,从激励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,不要让一些思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以激励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。
视频来源:优质课网 www.youzhik.com