视频标签:平行线的性质
所属栏目:初中数学优质课视频
视频课题:初中数学人教版七年级下册《平行线的性质1,2,3》陕西省数学优质课
教学设计、课堂实录及教案:初中数学人教版七年级下册平行线的性质1,2,3陕西
《平行线的性质》教学设计(第一课时)
第一部分:教学分析 (一)教学内容:
平行线的性质是空间与图形领域的基础知识。在以后的学习中经常要用到,这部分内容也是后续内容学习的基础,不但为三角形内角和定理的证明提供了转化的方法,而且为今后学习三角形全等、三角形相似等知识内容奠定了理论基础。
而在本节课学习之前,学生已经了解了平行线的概念以及平行线的判定方法,本节内容则是在原有知识的基础上进行进一步的探究,去发现两条平行线被第三条直线所截,截得的同位角、内错角、同旁内角之间存在着怎样的联系。
综合来看,平行线的性质在教学内容中起着承上启下的基础作用。 (二)教学目标:
根据数学课程内容标准要求及教学内容的特点,以及学生的认知水平,确定本节课的教学目标如下:
知识与技能:学习平行线性质的探究方法,掌握平行线的三条性质,并能用它们进行简单的推理和计算。
过程与方法:经历猜想、动手操作、推理论证、合作交流探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
情感态度与价值观:通过观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。 (三)教学重、难点分析:
平行线的性质是后续知识内容学习的基础,让学生通过数学活动来发现结论,经历知识的“再发现”过程,可以增强学生对平行线性质的认识和理解,培养学生多发面的能力。因此我将本节课的重点确定为:探究和应用平行线的性质。
由于学生刚刚接触平面图形的相关知识,对于数学活动的方法及思路还不够清晰,在探究时容易出现思维混乱,主题不明。因此我将本节课的难点确定为:探究平行线的性质。 (四)教学辅助手段
利用多媒体(几何画板、实物投影)、直尺、三角板、量角器、剪刀进行辅助教学 第二部分:教学设计 一、创设情境,感知性质
问题1:生活中的斑马线、窗户的防护网体育场跑道等生活常见事物中都有什么几何图形? 问题2:我们学过判定两条直线平行的方法有哪些? 教师提出问题,学生共同回答。
在学生回答后教师根据判定方法的内容提出问题:如果将判定方法中的结论做为条件,是否能够得到判定方法中的已知。
设计意图:带领学生感受身边的数学知识,并回顾已学内容并加深理解,同时根据回顾内容引出新问题,引出新课 二、动手操作,合作归纳
问题3:如图,直线a//b,直线c与a、b相交,图中∠1与∠5之间有什么关系?你有什
么猜想?如何验证你的猜想?
学生动手操作,通过观察、实验、猜想、验证完成问题。 (1)小组成员共同完成,通过用量角器度量,学生发
现∠1和∠2的关系是相等的,在图中再画另一条直线d与直线a、b相交,选取一组同为角进行度量,验证猜想结果正 确:两直线平行,同位角相等。
(2)还有学生用“裁剪叠合法”,将一组同位角剪下叠合在一起来验证结论。 (3)教师用几何画板软件直观演示两直线平行时,同位角的相等关系。 在本次活动中,教师应重点关注:
(1)量角器的正确使用方法,以及叠合法的应用; (2) 实验过程中,明确前提条件为两条直线平行; (3)培养学生的动手实践能力
设计意图:让学生通过动手实验发现问题,解决疑惑,并在实验过程中掌握并牢记知识。通过直观感受验证自己的猜想,从而得到结论。 三、应用转化,推出性质
问题4:如图,如果a//b,c与a、b相交,那么∠3与∠5、∠3与∠6在位置上有什么关系、在数量上有什么关系?你有什么猜想? 1)你能根据性质1,推出性质2吗?如上图: 因为a//b
所以∠1=∠5( ) 又∠3= ( 对顶角相等 ) 所以∠3=∠5 2)如图,类似地,
你能根据性质2,推出性质3吗?还有其他推理方法吗? (1)学生通过观察及思考,提出自己的猜想,
(2)教师在黑板上出示图形和已知求证,请学生代表上台来推导性质2和性质3. (3)教师利用几何画板进行演示,在演示过程中,得出猜想的正确性。 内错角、同旁内角演示几何画板
学生进行小组讨论共同分析总结,得出组内结论。 教师根据小组结论内容进行提问,得出性质2和性质3
问题5:根据以上实验过程,你能说出两条平行线被第三条直线所截,有什么性质吗? 归纳新知:平行线性质定理
(1)两条平行线被第三条直线所截, (2)两条平行线被第三条直线所截, (3)两条平行线被第三条直线所截, 简单的说成:
8
7654
321cba
E
D
CBA1
2
3
4(1) (2) (3)
问题6:如图,直线a、b被直线c所截,在括号内为下面各小题填空: (1) 性质1: ∵a//b ∴∠1=∠5
(两直线平行,同位角相等) (2) 性质2: ∵a//b ∴∠ =∠ (两直线平行,内错角相等) (3) 性质3:
∵a//b ∴∠ +∠ = ( )
学生根据刚刚学过的知识,自己进行总结。
教师提问完成的表述形式,由学生共同回答简单说成的形成,并给出2分钟时间进行小组考核,在熟记的基础上去进行平行线性质的运用。
教师:对比平行线的判定方法我们知道,数学中不仅有文字语言、图形语言还有符号语言,你能够运用所学知识层层递进,完成符号语言的表达形式。 学生独立完成,教师提问并归纳总结。 本环节要重点注意: (1) 学生对性质的书写 (2) 学生对符号语言的掌握程度
设计意图:让学生自己总结,既锻炼学生的逻辑推理能力、语言表达能力,又能加深学生对知识的掌握和理解。培养学生的数学语言及思维。 四、师生互动,应用性质
例1 如图,平行线AB,CD被直线AE所截. 从∠1=110º.可以知道∠2是多少度吗?为什么? 从∠1=110º可以知道∠3是多少度吗?为什么? 从∠1=110º可以知道∠4是多少度吗?为什么?
教师带领学生完成问题1,帮助学生理清思路并掌握解题过程
学生根据已掌握内容独立写出问题2的完整推理过程,并进行小组共同推敲检查得出最终过程。
教师从各组选出代表,利用实物投影展示各组完成内容,并进行互相评价,得出最合理、完整的推理过程。
例2。如图,在汶川大地震当中,一辆抗震救灾拖拉机经过一条公路两次拐弯后,和原来的方向相同,也就是拐弯前后的两条路互相平行.第一次拐的角∠B等于1420,第二次拐的角∠C是多少度?为什么?
先让学生进行自主分析,利用已学知识解决这道实际问题,并在解决过程中发现本节课
所讲知识点,并加以运用。
学生完成后,教师在黑板上进行板演写出完整的解题过程。
学生独立完成,找两名学生到黑板进行讲解,对比过程的书写并由学生进行纠错,总结出完成的解题过程。 计算结果正确的学生举手示意教师; 过程书写完整的学生举手示意教师。
设计意图:符号语言的运用在实际的解题过程中十分重要,让学生通过总结、分析、学习,掌握符号语言的表示方法、熟练运用。并进行当堂反馈,掌握学生的易错、易混点,并进行解决。
五、巩固深化,展示才华 练习:如图所示:
如图,已知AB∥CD,AE∥CF,∠A= 39°, ∠C是多少度?为什么? 本环节要重点注意:
(1) 学生对于平行线性质的掌握及灵活应用 (2) 培养学生的数学思维 学生思考后回答,教师点评 学生独立完成,教师巡视,指导。 本环节要重点注意:
(1)注重学生数学思维的形成 (2)提高学生的书写能力 (3)注意平行线判定及性质的区别
设计意图:培养学生的数学思维,让学生从多角度进行思考解决问题,并在思考过程中发现知识点,提高提炼总结的能力。并检验学生对本节课知识的掌握程度。 六 、归纳小结,回味性质 从以下几个方面小结
G
F
E
D
CBA
1.我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系. 2.这节课我们解决了什么问题? 3.你还有哪些收获?
学生总结本节课内容后,小组间互相提问,看哪组将问题处理的正确、清晰。 教师提问学生回答,从知识层面,学习方法层面,解题能力等方面进行总结
设计意图:培养学生的数学思维、符号语言的应用和语言表达能力,让学生从多角度进行思考解决问题,并在思考过程中发现知识点,提高提炼总结的能力。并检验学生对本节课知识的掌握程度。
七、当堂检测,分层作业
出示四道当堂检测题。检测学生对知识的掌握情况。用时5分钟,做完后,同桌互相交换阅卷,当堂评出分数,教师汇总,并总结。 学生独立完成,教师巡视,发现问题 必做题:习题5.3 1、3、4 选做题:习题5.3 6、7、8
设计意图:一节课到底教学重难点有没有突破,效果如何,通过当堂检测可以及时反馈教学的有效信息,帮助师生了解教情、学情。分层作业体现了“人人学有价值的数学,不同的人在数学上得到不同的发展”的教育理念。
第三部分:教学评价:
本节课通过回忆已学知识,从而引入新课,衔接得当。再通过在各环节设置一系列问题,让学生能围绕重、难点展开思考、讨论,进行学习。在设计上,强调自主学习、注重合作交流,让学生与学生间的交流活动在实验探索过程中进行,使他们通过动手实践、观察分析、合理猜想、合作交流解决问题体验并感悟平行线的性质,使他们在探索过程中感受到学习的快乐,真正成为学习的主人,达到突出重点突破难点的目的。 第四部分:教学反思:
本节课教学内容对于程度较好的学生来说较容易理解,所以在进行习题练习时,要进行分层练习,让各层次水平学生得到锻炼提高。同时在教学过程中,要加强每个环节的学情反馈。如:教材设置的第二个思考题,对于学生来说是个难点,在过程书写时容易混淆不清,因此在教学过程中,可以通过对比分析或错讲法使学生掌握知识内容并熟练运用。
视频来源:优质课网 www.youzhik.com